Program induction in LazyPPL

We treat program induction as a regression problem: finding programs that may have noisly generated some data points. This is inspired by Section 5.3 of An Introduction to Probabilistic Programming van de Meent, Paige, Yang, Wood, arxiv:1809.10756.

Extensions and imports for this Literate Haskell file
module ProgramInductionDemo where
import LazyPPL
import LazyPPL.Distributions
import Control.Monad (replicateM,forM_)
import Graphics.Matplotlib hiding (density)


We begin with a tiny programming language for arithmetic expressions and if-then-else. We define a datatype Expr of expressions in one variable.
data Expr = Var | Constt Double | Add Expr Expr | Mult Expr Expr
          | IfLess Double Expr Expr
(Pretty printing routines)
instance Show Expr where
  show Var = "x"
  show (Constt r)  = show $ (fromInteger $ round $ r * 10) / 10.0
  show (Add e1 e2) = "(" ++ show e1 ++ " + "++show e2++")"
  show (Mult e1 e2) = "(" ++ show e1 ++ " . "++show e2++")"
  show (IfLess r e1 e2) =
    "(if x<" ++ show (Constt r) ++ " then "++show e1 ++" else "++show e2++")"

We define a standard evaluation function, essentially a definitional interpreter.
eval :: Expr -> Double -> Double
eval Var x = x
eval (Constt r) _ = r
eval (Add e1 e2) x = (eval e1 x) + (eval e2 x)
eval (Mult e1 e2) x = (eval e1 x) * (eval e2 x)
eval (IfLess r e1 e2) x = if x < r then eval e1 x else eval e2 x
Here is a routine for picking a random expression, essentially a probabilistic context free grammar.
randexpralt :: Prob Expr
randexpralt = do
  i <- categorical [0.3,0.3,0.18,0.18,0.04]
  e <- [return Var ,
        do { n <- normal 0 5 ; return $ Constt n },
        do { e1 <- randexpralt ; e2 <- randexpralt ; return $ Add e1 e2},
        do { e1 <- randexpralt ; e2 <- randexpralt ; return $ Mult e1 e2},
        do { r <- normal 0 5 ; e1 <- randexpralt ; e2 <- randexpralt ; return $ IfLess r e1 e2}]
       !! i        
  return e
The following transformed code is equivalent but works much better. We simultaneously generate all the random choices, lazily. It only makes sense when lazy, because es is an infinite thing. This kind of transformation, which uses laziness (also “affine monads”, “discardability”) is discussed more here.
randexpr :: Prob Expr
randexpr = do
  i <- categorical [0.3,0.3,0.18,0.18,0.04]
  es <- sequence
     [return Var ,
     do { n <- normal 0 5 ; return $ Constt n },
     do { e1 <- randexpr ; e2 <- randexpr ; return $ Add e1 e2},
     do { e1 <- randexpr ; e2 <- randexpr ; return $ Mult e1 e2},
     do { r <- normal 0 5 ; e1 <- randexpr ; e2 <- randexpr ; return $ IfLess r e1 e2}]
  return $ es !! i
We can use the random expression randexpr to define a random function. Ideally we’d just return the function (eval e), but we also keep a string so we can print things.
randfun :: Prob (Double -> Double,String)
randfun = do
  e <- randexpr
  return (eval e,show e)
For program induction, we will treat randfun as a prior distribution, include some observations, and then find a posterior distribution on program expressions. We will use the same example data set.
dataset :: [(Double, Double)]
dataset = [(0,0.6), (1, 0.7), (2,1.2), (3,3.2), (4,6.8), (5, 8.2), (6,8.4)]
We recall the generic regression function from the other regression examples.
regress :: Double -> Prob (a -> Double,String) -> [(a,Double)]
           -> Meas (a->Double,String)
regress sigma prior dataset =
  do (f,s) <- sample prior
     forM_ dataset $ \(x,y) -> score $ normalPdf (f x) sigma y
     return (f,s)
We sample from this distribution using Metropolis Hastings and plot three examples.
plotExprCodeRegression =
  do
    fws <- mhirreducible 0.1 0.005 (regress 0.25 randfun dataset)
    let functions = map fst $ take 3 $ every 1000 $ drop 1000 fws
    plotFuns "images/programinduction-reg.svg" dataset functions

(Pretty printing routines)
-- Plot the points drawn 
-- More graphing routines
-- epsilon: smallest y axis difference to worry about
-- delta: smallest x axis difference to worry about
interestingPoints :: (Double -> Double) -> Double -> Double -> Double -> Double -> [Double] -> [Double]
interestingPoints f lower upper epsilon delta acc =
  if abs(upper - lower) < delta then acc
  else
    let mid = (upper - lower) / 2 + lower in
    if abs((f(upper) - f(lower)) / 2 + f(lower) - f(mid)) < epsilon 
    then acc
    else interestingPoints f lower mid epsilon delta (mid : (interestingPoints f mid upper epsilon delta acc))
 
sampleFun f = 
--  [ (x, f x) | x <- [(-0.25),(-0.25+0.1)..6.2]]
  let xs = ((-0.25) : (interestingPoints f (-0.25) 6.2 0.3 0.001 [6.2])) in
  map (\x -> (x,f x)) xs 

plotFuns :: String -> [(Double,Double)] -> [(Double -> Double,String)] -> IO ()
plotFuns filename dataset funs =
    do putStrLn $ "Plotting " ++ filename ++ "..."
       file filename $ (foldl (\a (f,s) -> let xys = sampleFun f in a % plot (map fst xys) (map snd xys) @@ [o2 "label" s]) (scatter (map fst dataset) (map snd dataset) @@ [o2 "c" "black"] % xlim (0 :: Int) (6 :: Int) % ylim (-2 :: Int) (10 :: Int)) funs) % legend @@ [o2 "loc" "lower left",o2 "bbox_to_anchor" ((0.2 :: Double), (0.01 :: Double))]
       putStrLn "Done."
       return ()



main :: IO ()
main = do {  plotExprCodeRegression } 


Generated by Pandoc from Literate Haskell. Full source on .